Physical Stability of Insulin Formulations

Author:

Lougheed W D1,Albisser A M1,Martindale H M2,Chow J C2,Clement J R2

Affiliation:

1. Hospital for Sick Children Willowdale, Ontario, Canada

2. Connaught Laboratories Limited Willowdale, Ontario, Canada

Abstract

Insulin aggregation remains a fundamental obstacle to the long-term application of many insulin infusion systems. We here report the effects of physiologic and nonphysiologic compounds on the aggregation behavior of crystalline zinc insulin (CZI) solutions. Under conditions chosen to simulate the most severe that would be encountered in delivery systems (presence of air, continuous motion, and elevated temperature), both highly purified and regular CZI at 5 U/ml formed turbid gels in 5 days. At concentrations of 100 and 500 U/ml stability was increased with turbid gels forming at 12 and 15 days, respectively. Under identical conditions, 5 U/ml CZI formulations containing the physiologic surfactant lysophosphatidylcholine (0.02%) or the synthetic surfactants SDS (1%), Brij 35 (0.1%), Tween (0.01%), or Triton X (0.01%) retained a transmittance at 540 nm of >96% for 67–150 days. These nonionic and ionic surfactants containing the hydrophobic group, CH3(CH2)N, with N = 7–16, remarkably stabilized CZI formulations while those lacking such groups demonstrated little or no effect. The alcohols glycerol (30–50%) and isopropanol (10–50%) were moderately effective stabilizers. Silicone rubber drastically accelerated aggregation in all but one formulation (1% SDS). Emphasis in this study was placed on the properties of 5-U/ml formulations. Controls run at higher concentrations indicated a positive correlation between concentration and stability. It was concluded that the aggregation of insulin into high-molecular-weight polymers may be inhibited by reducing the effective polarity of the solvent. In this regard, anionic and nonionic surfactants containing appropriately long hydrophobic groups demonstrated the greatest degree of stabilization. Finally, of all the medical grade materials likely to be used in pumps, silicone rubber is the most active in promoting insulin aggregation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3