Anti-Islet Immunity and Thymic Dysfunction in the Mutant Diabetic C57BL/ KsJ db/db Mouse

Author:

Debray-Sachs Monique1,Dardenne Mireille1,Sai Pierre2,Savino Wilson1,Quiniou Marie-Christine3,Boillot Dominique3,Gepts Willy4,Assan Roger3

Affiliation:

1. INSERM U 25, Hôpital Necker Paris, France

2. Ecole Vétérinaire Nantes, France

3. Diabetes Department, Hôpital Bichat Paris, France

4. Laboratory of Pathology VUB Brussels, Belgium

Abstract

Anti-islet immune reactions were studied in vitro in genetically diabetic homozygote C57BL/KsJ db/db mice, using murine islet cells as a target. Spleen lymphocytes inhibited insulin secretion by the islet cells. This inhibition was abolished when T-cells were eliminated by treatment with anti-Thy 1.2 monoclonal antibody in the presence of complement. Anti-islet complement-dependent antibody (CDA) and antibody-dependent cell cytotoxicity (ADCC) were also found in the sera of these mice. This anti-islet immunity was detectable as early as the tenth day of life and lasted throughout the entire life span of the animals. A significant lymphopenia was detected in thymus and spleen cell populations. None of these anomalies was found in control heterozygote mice. Thymic function was explored in the same mice by evaluating their serum thymic factor (FTS) levels using a rosette assay. The age-dependent decline of FTS levels was significantly accelerated in diabetic mice as compared with heterozygous littermates. Futhermore, FTS inhibitory immunoglobulins were detected in db/db mouse sera, which inactivated in vitro the biologic potency of synthetic FTS. Histologically, the thymus displayed an accelerated involution. It was shown by indirect immunofluorescence using anti-FTS monoclonal antibodies that the number of FTS+ cells was reduced in db/db mouse thymuses. Histologie study of the islets of Langerhans showed early signs of β-cell hyperactivity and hypertrophy, followed by β-cell rarefaction and profound dislocation of islet architecture. Insulitis was not detected.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3