Deletion of the Receptor for Advanced Glycation End Products Reduces Glomerulosclerosis and Preserves Renal Function in the Diabetic OVE26 Mouse

Author:

Reiniger Nina1,Lau Kai2,McCalla Daren1,Eby Bonnie2,Cheng Bin3,Lu Yan1,Qu Wu1,Quadri Nosirudeen1,Ananthakrishnan Radha1,Furmansky Maryana1,Rosario Rosa1,Song Fei1,Rai Vivek1,Weinberg Alan3,Friedman Richard45,Ramasamy Ravichandran1,D'Agati Vivette6,Schmidt Ann Marie1

Affiliation:

1. Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York;

2. Section of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;

3. Department of Biostatistics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York;

4. Department of Biomedical Informatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York;

5. Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York;

6. Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York.

Abstract

OBJECTIVE Previous studies showed that genetic deletion or pharmacological blockade of the receptor for advanced glycation end products (RAGE) prevents the early structural changes in the glomerulus associated with diabetic nephropathy. To overcome limitations of mouse models that lack the progressive glomerulosclerosis observed in humans, we studied the contribution of RAGE to diabetic nephropathy in the OVE26 type 1 mouse, a model of progressive glomerulosclerosis and decline of renal function. RESEARCH DESIGN AND METHODS We bred OVE26 mice with homozygous RAGE knockout (RKO) mice and examined structural changes associated with diabetic nephropathy and used inulin clearance studies and albumin:creatinine measurements to assess renal function. Transcriptional changes in the Tgf-β1 and plasminogen activator inhibitor 1 gene products were measured to investigate mechanisms underlying accumulation of mesangial matrix in OVE26 mice. RESULTS Deletion of RAGE in OVE26 mice reduced nephromegaly, mesangial sclerosis, cast formation, glomerular basement membrane thickening, podocyte effacement, and albuminuria. The significant 29% reduction in glomerular filtration rate observed in OVE26 mice was completely prevented by deletion of RAGE. Increased transcription of the genes for plasminogen activator inhibitor 1, Tgf-β1, Tgf-β–induced, and α1-(IV) collagen observed in OVE26 renal cortex was significantly reduced in OVE26 RKO kidney cortex. ROCK1 activity was significantly lower in OVE26 RKO compared with OVE26 kidney cortex. CONCLUSIONS These data provide compelling evidence for critical roles for RAGE in the pathogenesis of diabetic nephropathy and suggest that strategies targeting RAGE in long-term diabetes may prevent loss of renal function.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3