NADPH Oxidases, Reactive Oxygen Species, and Hypertension

Author:

Paravicini Tamara M.1,Touyz Rhian M.1

Affiliation:

1. Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada

Abstract

Reactive oxygen species (ROS) influence many physiological processes including host defense, hormone biosynthesis, fertilization, and cellular signaling. Increased ROS production (termed “oxidative stress”) has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic kidney disease. A major source for vascular and renal ROS is a family of nonphagocytic NAD(P)H oxidases, including the prototypic Nox2 homolog-based NAD(P)H oxidase, as well as other NAD(P)H oxidases, such as Nox1 and Nox4. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase, and uncoupled nitric oxide synthase. NAD(P)H oxidase-derived ROS plays a physiological role in the regulation of endothelial function and vascular tone and a pathophysiological role in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, important processes underlying cardiovascular and renal remodeling in hypertension and diabetes. These findings have evoked considerable interest because of the possibilities that therapies against nonphagocytic NAD(P)H oxidase to decrease ROS generation and/or strategies to increase nitric oxide (NO) availability and antioxidants may be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress target organ damage associated with hypertension and diabetes. Here we highlight current developments in the field of reactive oxygen species and cardiovascular disease, focusing specifically on the recently identified novel Nox family of NAD(P)H oxidases in hypertension. We also discuss the potential role of targeting ROS as a therapeutic possibility in the management of hypertension and cardiovascular disease.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3