Reversal of Somatostatin Inhibition of Insulin and Glucagon Secretion

Author:

Bhathena S J1,Perrino P V1,Voyles N R1,Smith S S1,Wilkins S D1,Coy D H1,Schally A V1,Recant L1

Affiliation:

1. Veterans Administration Hospital and Georgetown University School of Medicine Washington, D.C

Abstract

These studies were designed to elucidate the mechanism of inhibitory action of somatostatin (SRIF) on glucagon (IRG) and insulin (IRI) secretion. Studies were carried out in the unrecirculated isolated rat pancreas perfusion with arginine 19.2 mM and glucose 5.5 mM as stimulus primarily for IRG but also IRI secretion. The effects of excess Ca++ (15.2 mEq./L.) and excess K+ (12.8 mEq./L.) on IRG, IRI, and the SRIF-inhibited pancreas were studied. Ca++ excess in five perfusions strikingly stimulated IRG secretion (+92 per cent) but only stabilized IRI secretion compared with control perfusions. K+ excess (in seven perfusions) markedly inhibited IRG secretion (–39 per cent) while stimulating IRI secretion (+16 per cent). Restoration of normal concentrations of K+ resulted in a rebound of IRG to levels 120 per cent that of controls. SRIF, at concentrations from 0.1–20 ng./ml., produced inhibition of both IRG and IRI. In 11 perfusions, with SRIF at 10 ng./ml., IRG decreased more than IRI (–75.2 per cent IRG and –46.9 per cent IRI). In five perfusions, addition of Ca++ (15.2 mEq./L.) 10 minutes after SRIF was started resulted in a reversal of IRG inhibition to 69.4 per cent and IRI to 73.2 per cent of the arginine controls. The reversal by Ca++ of SRIF effect on IRG was greater at higher concentrations of Ca++, suggesting some form of competition. In four perfusions, excess K+ reversed SRIF-induced IRI inhibition to 79.6 per cent that of controls but had no effect on IRG inhibition. Studies in vitro with isolated islets revealed that SRIF (2 μg./ml.) inhibited 45Ca uptake of islets as did epinephrine (10−5 M). It was concluded that SRIF-induced inhibition of hormone release appears related to an action on Ca++ uptake.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3