Genetic Disruption of Myostatin Reduces the Development of Proatherogenic Dyslipidemia and Atherogenic Lesions In Ldlr Null Mice

Author:

Tu Powen1,Bhasin Shalender12,Hruz Paul W.3,Herbst Karen L.4,Castellani Lawrence W.5,Hua Ning6,Hamilton James A.6,Guo Wen2

Affiliation:

1. Department of Molecular Medicine, Boston University School of Medicine, Boston, Massachusetts;

2. Section of Endocrinology, Diabetes, & Nutrition, Department of Medicine, Boston Medical Center, Boston, Massachusetts;

3. Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri;

4. Division of Endocrinology & Metabolism, University of California San Diego, San Diego, California;

5. Departments of Medicine/Cardiology, University of California Los Angeles, Los Angeles, California;

6. Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts.

Abstract

OBJECTIVE Insulin-resistant states, such as obesity and type 2 diabetes, contribute substantially to accelerated atherogenesis. Null mutations of myostatin (Mstn) are associated with increased muscle mass and decreased fat mass. In this study, we determined whether Mstn disruption could prevent the development of insulin resistance, proatherogenic dyslipidemia, and atherogenesis. RESEARCH DESIGN AND METHODS C57BL/6 Ldlr−/− mice were cross-bred with C57BL/6 Mstn−/− mice for >10 generations to generate Mstn−/−/Ldlr−/− double-knockout mice. The effects of high-fat/high-cholesterol diet on body composition, plasma lipids, systemic and tissue-specific insulin sensitivity, hepatic steatosis, as well as aortic atheromatous lesion were characterized in Mstn−/−/Ldlr−/− mice in comparison with control Mstn+/+/Ldlr−/− mice. RESULTS Compared with Mstn+/+/Ldlr−/− controls, Mstn−/−/ Ldlr−/− mice were resistant to diet-induced obesity, and had greatly improved insulin sensitivity, as indicated by 42% higher glucose infusion rate and 90% greater muscle [3H]-2-deoxyglucose uptake during hyperinsulinemic-euglycemic clamp. Mstn−/−/Ldlr−/− mice were protected against diet-induced hepatic steatosis and had 56% higher rate of hepatic fatty acid β-oxidation than controls. Mstn−/−/Ldlr−/− mice also had 36% lower VLDL secretion rate and were protected against diet-induced dyslipidemia, as indicated by 30–60% lower VLDL and LDL cholesterol, free fatty acids, and triglycerides. Magnetic resonance angiography and en face analyses demonstrated 41% reduction in aortic atheromatous lesions in Ldlr−/− mice with Mstn deletion. CONCLUSIONS Inactivation of Mstn protects against the development of insulin resistance, proatherogenic dyslipidemia, and aortic atherogenesis in Ldlr−/− mice. Myostatin may be a useful target for drug development for prevention and treatment of obesity and its associated type 2 diabetes and atherosclerosis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3