Regulation of STAT1 Signaling in Human Pancreatic β-Cells by the Lysine Deacetylase HDAC6: A New Therapeutic Opportunity in Type 1 Diabetes?

Author:

Leslie Kaiyven Afi1,Lekka Christiana1,Richardson Sarah J.1ORCID,Russell Mark A.1,Morgan Noel G.ORCID

Affiliation:

1. Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, U.K.

Abstract

Type 1 diabetes arises from the selective destruction of pancreatic β-cells by autoimmune mechanisms, and intracellular pathways driven by Janus kinase (JAK)–mediated phosphorylation of STAT isoforms (especially STAT1 and STAT2) are implicated as mediators of β-cell demise. Despite this, the molecular mechanisms that regulate JAK-STAT signaling in β-cells during the autoimmune attack remain only partially disclosed, and the factors acting to antagonize proinflammatory STAT1 signaling are uncertain. We have recently implicated signal regulatory protein α (SIRPα) in promoting β-cell viability in the face of ongoing islet autoimmunity and have now revealed that this protein controls the availability of a cytosolic lysine deacetylase, HDAC6, whose activity regulates the phosphorylation and activation of STAT1. We provide evidence that STAT1 serves as a substrate for HDAC6 in β-cells and that sequestration of HDAC6 by SIRPα in response to anti-inflammatory cytokines (e.g., IL-13) leads to increased STAT1 acetylation. This then impairs the ability of STAT1 to promote gene transcription in response to proinflammatory cytokines, including interferon-γ. We further found that SIRPα is lost from the β-cells of subjects with recent-onset type 1 diabetes under conditions when HDAC6 is retained and STAT1 levels are increased. On this basis, we report a previously unrecognized role for cytokine-induced regulation of STAT1 acetylation in the control of β-cell viability and propose that targeted inhibition of HDAC6 activity may represent a novel therapeutic modality to promote β-cell viability in the face of active islet autoimmunity. Article Highlights

Funder

Diabetes UK

Publisher

American Diabetes Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3