Glucose-Activated Switch Regulating Insulin Analog Secretion Enables Long-term Precise Glucose Control in Mice With Type 1 Diabetes

Author:

Xie Lifang1,Lu Wanling1,Zhang Yanhan1,Deng Lu1,Liu Ming2,Gao Hong3,Xie Chunguang3,Wang Gang1ORCID

Affiliation:

1. 1National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China

2. 2West China Hospital, Sichuan University, Chengdu, Sichuan, China

3. 3Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of TCM, Chengdu, Sichuan, China

Abstract

Genetic modification of non–β-cells to produce insulin is a promising therapeutic strategy for type 1 diabetes; however, it is associated with issues, including biosafety and precise regulation of insulin supply. In this study, a glucose-activated single-strand insulin analog (SIA) switch (GAIS) was constructed to achieve repeatable pulse activation of SIA secretion in response to hyperglycemia. In the GAIS system, the conditional aggregation domain–furin cleavage sequence–SIA fusion protein was encoded by the intramuscularly delivered plasmid and temporarily kept in the endoplasmic reticulum (ER) because it binds to the GRP78 protein; then, upon hyperglycemia, the SIA was released and secreted into the blood. In vitro and in vivo experiments systematically demonstrated the effects of the GAIS system, including glucose-activated and repeatable SIA secretion, long-term precise blood glucose control, recovered HbA1c levels, improved glucose tolerance, and ameliorated oxidative stress. Additionally, this system offers sufficient biosafety, as evidenced by the assays of immunological and inflammatory safety, ER stress, and histological evaluation. Compared with the viral delivery/expression system, the ex vivo implantation of engineered cells, and the exogenous inducer system, the GAIS system combines the advantages of biosafety, effectiveness, persistence, precision, and convenience, providing therapeutic potential for the treatment of type 1 diabetes. Article Highlights We undertook this study to establish a glucose-responsive single-strand insulin analog (SIA) self-supply system in vivo. We sought to determine whether the endoplasmic reticulum (ER) can serve as a safe and temporary repository to store designed fusion proteins and release SIAs under hyperglycemic conditions for efficient blood glucose regulation. The intramuscularly expressed plasmid-encoded conditional aggregation domain–furin cleavage sequence–SIA fusion protein can be temporarily stored in the ER, and the SIA can be released under the stimulation of hyperglycemia, resulting in efficient and long-term regulation of stable blood glucose in mice with type 1 diabetes (T1D). The glucose-activated SIA switch system provides applicable potential for T1D therapy, integrating regulation and monitoring of blood glucose levels.

Funder

the National Natural Science Foundation of China

the International Cooperative Project of Sichuan Province on Science and Technology Innovation

the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3