Effects of Hyperglycemia on Glucose Production and Utilization in Humans: Measurement With [23H]-, [33H]-, and [614C]Glucose

Author:

Bell P M1,Firth R G1,Rizza R A1

Affiliation:

1. Endocrine Research Unit, Mayo Clinic Rochester, Minnesota 55905

Abstract

Studies with tritiated isotopes of glucose have demonstrated that hyperglycemia per se stimulates glucos utilization and suppresses glucose production in humans. These conclusions rely on the assumption that tritiated glucose provides an accurate measure of glucose turnover. However, if in the presence of hyperglycemia the isotope either loses its label during “futile” cycling or retains its label during cycling through glycogen, then this assumption is not valid. To examine this question, glucose utilization and glucose production rates were measuredin nine normal subjects with a simultaneous infusion of [23H]glucose, an isotope that may undergo futile cycling but does not cycle through glycogen; [614C]glucose, an isotope that may cycle through glycogen but does not futile cycle; and [33H]glucose, an isotope that can both undergo futile cycling and cycle through glycogen. In the postabsorptive state at plasma glucose concentration of 95 mg dl−1, glucose turnover determined with [614C]glucose (2.3 ±0.1 mg kg−1 min−1) was greater than that determined with [33H]glucose (2.1 ± 0.1 mg kg−1 min−1 P = 0.002) and slightly less than that determined with [23H]glucose (2.7 ± 0.2 mg kg−1 min−1 P = 0.08). Plasma glucose was then raised from 95 to 135 to 175 mg dl−1 while insulin secretion was inhibited, and circulating insulin, glucagon, and growth hormone concentrations were maintained constant by infusion of these hormones and somatostatin. Glucose production and utilization rates determined with [614C]-glucose continued to be less than those determined with [23H]glucose and greater than those seen with [33H]glucose. However, the decrements in glucose production and increments in glucose utilization were identical with all isotopes. Glucagon was then infused at a high rate to stimulate endogenous glucose release. This resulted in a significant (P < 0.05) increase in both [614C]- and [33H]- but not [23H]giucose, indicating release of the former two isotopes from glycogen. This resulted in a significantly lower (P < 0.04) estimate of glucose production and utilization during the glucagon infusion determined with [614C]- and [33H]glucose compared with that determined with [23H]glucose. Thus, whereas neither [23H]- nor [33H]glucose precisely reflect glucose turnover measured by [614C]glucose, all three isotopes provide an equivalent assessment of the effects of hyperglycemia on glucose production and utilization in humans. However, release of either [614C]- or [33H]glucose from glycogen may result in an underestimate Of glucose turnover.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3