Subcellular Localization of GLUT4 in Nonstimulated and Insulin-Stimulated Soleus Muscle of Rat

Author:

Bornemann Aantje1,Ploug Thorkil1,Schmalbruch Henning1

Affiliation:

1. Department of Neuropathology, University of Mainz Mainz, Germany; Department of Medical Physiology B and the Institute of Neurophysiology, The Panum Institute, University of Copenhagen Copenhagen, Denmark

Abstract

Soleus muscles of fed rats were fixed by vascular perfusion with paraformaldehyde; individual fibers were teased and immunostained with a polyclonal antibody against the COOH-terminal of GLUT4. The binding sites were visualized by a horseradish peroxidase–coupled secondary antibody and diaminobenzidine. The fibers were embedded in epoxy resin and studied by electron microscopy. Strong immunoreactivity was found in subsarcolemmal clusters of vesicles and cisternae, Golgilike structures, and triadic junctions. Clusters of vesicles between myofibrils were occasionally stained. The plasma membrane was unlabeled. However, the plasma membrane was labeled when the rats had been injected with insulin (40 U/kg body wt) 15 min before perfusion fixation. In non–insulin-injected rats, the plasma membrane might show spotty staining close to clusters of intensely labeled subsarcolemmal vesicles. This may have been due to diffusion but may also indicate that there are domains of GLUT4 in the plasma membrane of nonstimulated fibers or that the endogenous insulin activity to some extent had translocated GLUT4 from the intracellular pool into the plasma membrane. Coated vesicles that were also labeled were found adjacent to subsarcolemmal vesicles and cisternae; it is possible that coated vesicles play a role during insulin- or contraction-induced translocation of GLUT4 between subsarcolemmal pool and plasma membrane. It has been proposed that glucose uptake into skeletal muscle fibers takes place across the t-tubule membrane rather than across the plasma membrane. This would explain the presence of GLUT4 at triadic junctions. Alternatively, we suggest that GLUT4 in t-tubules represents a second intracellular pool.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insulin Resistance and Cardiometabolic Syndrome;CardioMetabolic Syndrome Journal;2021

2. A Hierarchical Convolutional Neural Network for vesicle fusion event classification;Computerized Medical Imaging and Graphics;2017-09

3. Postprandial control of fatty acid transport proteins’ subcellular location is not dependent on insulin;FEBS Letters;2016-07-04

4. Glucose-dependent insulinotropic polypeptide directly induces glucose transport in rat skeletal muscle;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2015-08-01

5. Contractile C2C12myotube model for studying exercise-inducible responses in skeletal muscle;American Journal of Physiology-Endocrinology and Metabolism;2008-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3