Glucokinase Gene is Genetic Marker for NIDDM in American Blacks

Author:

Chiu Ken C1,Province Michael A1,Permutt M Alan1

Affiliation:

1. Metabolism Division, Department of Internal Medicine, and the Division of Biostatistics, Washington University Medical School St. Louis, Missouri

Abstract

Glucokinase (ATP:d-glucose-6-phosphotransferase), expressed exclusively in liver and pancreatic islet β-cells, catalyzes the first step of glycolysis and acts as glucose sensor and metabolic signal generator in these tissues. The enzyme plays a key role in glucose homeostasis and as such is an excellent candidate for inherited defects predisposing to non-insulin-dependent diabetes mellitus (NIDDM). A compound-imperfect dinucleotide (CA)n repeat element was found ∼10-kb 3′ of the human glucokinase gene on chromosome 7p, which revealed polymorphism with alleles differing in size by 2–15 nucleotides in unrelated individuals. A polymerase chain reaction assay was developed, and genomic DNA from 275 biologically unrelated American black individuals was typed for glucokinase alleles. The differences in allelic frequencies between individuals with NIDDM and nondiabetic individuals were compared. After typing 112 diabetic and 163 nondiabetic subjects, we found five different-sized alleles, with Z defined as the most common allele, Z + 2, Z + 4, Z + 10, and Z − 15. The Z allele was more common in nondiabetic subjects than in diabetic patients (60.4 vs. 49.6%, P = 0.012). The Z + 4 allele was more common in diabetic patients than in nondiabetic subjects (20.1 vs. 12.0%, P = 0.009). After adjusting for age, sex, and body mass index, the Z + 4 allele continued to have a positive association with NIDDM (P = 0.0018), and the Z allele had a negative association with NIDDM (P = 0.0334). The Z + 4 allele, transmitted as an autosomal dominant trait, appeared to be the most significant one at this locus. No difference was found in the clinical characteristics between the diabetic patients with or without the Z + 4 allele, after adjusting for multiple comparisons. These results indicate that the dinucleotide (CA)n repeat polymorphism at the glucokinase locus is a genetic marker for NIDDM in American blacks. We estimate that the presence of at least one Z + 4 allele increases the odds of NIDDM in this racial group by 2.85 times for the same age, sex, and body mass index combination.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3