Anti-CD3 Immunotoxin Prevents Low-Dose STZ/Interferon-Induced Autoimmune Diabetes in Mouse

Author:

Vallera Daniel A1,Carroll Stephen F1,Brief Susan1,Blazar Bruce R1

Affiliation:

1. Department of Therapeutic Radiology, Section on Experimental Cancer Immunology, the Department of Laboratory Medicine/Pathology, and the Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Hospital and Clinic Minneapolis, Minnesota OMA Corp. Berkeley, California

Abstract

Autoimmune diabetes was induced with an established model in which 3 daily injections of 95 mg/kg body wt/day streptozocin (STZ) and 2 × 104 U interferon-γ (IFN-γ) were administered to C57BL/6 mice. Diabetes onset was accompanied by precipitous increases in serum glucose levels and validated by immunoperoxidase studies showing diminished islets in pancreatic tissue sections. Administration of two to three doses of a monoclonal antibody (MoAb) or an immunotoxin (IT) directed against the CD3 ε-chain before STZ/IFN-γ treatment prevented increases in serum glucose and protected islets from damage. IT was made by crosslinking anti-CD3 to a low oligosaccharide-containing fraction of purified ricin toxin A chain (RTA; a catalytic inhibitor of protein synthesis) with a stabilized derivative of 2-iminothiolane. Protection was complete, long-lived, and selective because two different control ITs did not prevent diabetes onset. A second pan T-cell-reactive IT was synthesized by linking the MoAb anti-Ly1 to the same RTA toxin. Anti-Ly1 reacts with the murine homologue of human CD5. Anti-Ly1 RTA also protected against diabetes onset in a dose-dependent manner requiring higher doses and a longer schedule than anti-CD3 or anti-CD3 RTA. These studies demonstrate for the first time the importance of CD3+ and CD5+ cells in diabetes onset in the low-dose STZ/IFN-γ model and show that anti-CD3, anti-CD3 RTA, or anti-CD5 RTA may be useful in vivo for the treatment of diabetes or perhaps other T-cell-mediated autoimmune diseases. These data may have important therapeutic implications for early autoimmune diabetes in humans.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3