Human Islet Glucokinase Gene: Isolation and Sequence Analysis of Full-Length cDNA

Author:

Koranyi Laszlo I1,Tanizawa Yukio1,Welling Cris M1,Rabin Daniel U1,Permutt M Alan1

Affiliation:

1. Metabolism Division, Washington University School of Medicine St. Louis, Missouri Molecular Diagnostics, Miles Research Center West Haven, Connecticut

Abstract

Pancreatic islet glucokinase (ATP:d-hexose-6-phosphotransferase) cDNAs were isolated from a human islet cDNA library in λ-gt11. One clone (hlGLK2), 2723 bp plus additional poly(A) residues, appeared to be full length because its size was consistent with a single 2.9-kb glucokinase mRNA on Northern-blot analysis of islet RNA. This cDNA contained an open reading frame of 1395 bp from an ATG codon at position 459, encoding a predicted protein of 465 amino acids (52,000 Mr). Comparison of the nucleotide sequences of the human islet glucokinase cDNA with that of the recently isolated human liver glucokinase cDNA revealed that the two cDNAs differed completely on their 5′-ends, followed by an identical 2204-bp overlap extending to the 3′-ends. The 5′-ends of islet and liver glucokinase cDNAs predicted proteins that differ by 15 NH2-terminal residues. The overall sequence identity (70%) between the first exons of the human islet and rat islet cDNAs suggested that the islet promoter regions, like the liver promoter regions, have been conserved through evolution. Thus, NH2-terminal differences for human liver and islet enzymes might be explained by use of alternate promoters between the two tissues, analogous to the NH2-terminal differences of the rat liver and rat islet enzymes. If so, this relationship predicts important tissue-specific regulatory functions of these regions. Variations in the glucokinase gene are likely to occur in humans. Isolation of a human islet glucokinase cDNA has provided the sequence necessary to determine whether these variants are important determinants in the genetic predisposition for diabetes mellitus.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3