Gene Expression of GLUT4 in Skeletal Muscle From Insulin-Resistant Patients With Obesity, IGT, GDM, and NIDDM

Author:

Garvey W Timothy1,Maianu Lidia1,Hancock Jerry A1,Golichowski Alan M1,Baron Alain1

Affiliation:

1. Section of Endocrinology, Indianapolis Veterans Administration Medical Center; and the Departments of Medicine and of Obstetrics and Gynecology, Indiana University School of Medicine Indianapolis, Indiana

Abstract

In obesity, impaired glucose tolerance (IGT), non-insulin-dependent diabetes mellitus (NIDDM), and gestational diabetes mellitus (GDM), defects in glucose transport system activity, contribute to insulin resistance in target tissues. In adipocytes from obese and NIDDM patients, we found that pretranslational suppression of the insulin-responsive GLUT4 glucose transporter isoform is a major cause of cellular insulin resistance; however, whether this process is operative in skeletal muscle is not clear. To address this issue, we performed percutaneous biopsies of the vastus lateralis in lean and obese control subjects and in obese patients with IGT and NIDDM and open biopsies of the rectus abdominis at cesarian section in lean and obese gravidas and gravidas with GDM. GLUT4 was measured in total postnuclear membrane fractions from both muscles by immunoblot analyses. The maximally insulin-stimulated rate of in vivo glucose disposal, assessed with euglycemic glucose clamps, decreased 26% in obesity and 74% in NIDDM, reflecting diminished glucose uptake by muscle. However, in vastus lateralis, relative amounts of GLUT4 per milligram membrane protein were similar (NS) among lean (1.0 ± 0.2) and obese (1.5 ± 0.3) subjects and patients with IGT (1.4 ± 0.2) and NIDDM (1.2 ± 0.2). GLUT4 content was also unchanged when levels were normalized per wet weight, per total protein, and per DNA as an index of cell number. Levels of GLUT4 mRNA were similarly not affected by obesity, IGT, or NIDDM whether normalized per RNA or for the amount of an unrelated constitutive mRNA species. Because muscle fibers (types I and II) exhibit different capacities for insulin-mediated glucose uptake, we tested whether a change in fiber composition could cause insulin resistance without altering overall levels of GLUT4. However, we found that quantities of fiber-specific isoenzymes (phopholamban and types I and II Ca2+-ATPase) were similar in all subject groups. In rectus abdominis, GLUT4 content was similar in the lean, obese, and GDM gravidas whether normalized per milligram membrane protein (relative levels were 1.0 ± 0.2, 1.3 ± 0.1, and 1.0 ± 0.2, respectively) or per wet weight, total protein, and DNA. We conclude that in human disease states characterized by insulin resistance, i.e., obesity, IGT, NIDDM, and GDM, GLUT4 gene expression is normal in vastus lateralis or rectus abdominis. To the extent that these muscles are representative of total muscle mass, insulin resistance in skeletal muscle may involve impaired GLUT4 function or translocation and not transporter depletion as observed in adipose tissue.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3