Mechanistic Studies of Advanced Glycosylation End Product Inhibition by Aminoguanidine

Author:

Edelstein Diane1,Brownlee Michael1

Affiliation:

1. Department of Medicine and Diabetes Research Center, Albert Einstein College of Medicine Bronx, New York

Abstract

Aminoguanidine-HCl inhibits the formation of advanced glycosylation end products (AGEs) in vitro and in vivo, but the mechanism by which this occurs has not been determined. Aminoguanidine inhibited glucose-derived AGE formation on RNase A by 67–85% at aminoguanidine-glucose molar ratios of 1:5 to 1:50 without affecting the concentration of Amadori products. Fast–atom-bombardment mass spectrometry of RNase peptides incubated with glucose alone or with glucose plus aminoguanidine showed that aminoguanidine inhibited the formation of AGEs without forming an adduct with glycosylated peptide. These data suggest that the primary mechanism of aminoguanidine action is reaction with Amadori-derived fragmentation products in solution. These findings are relevant to the potential clinical use of aminoguanidine in the prevention of diabetic complications.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3