Raised Late Pregnancy Glucose Concentrations in Mice Carrying Pups With Targeted Disruption of H19Δ13

Author:

Petry Clive J.1,Evans Mark L.23,Wingate Dianne L.1,Ong Ken K.14,Reik Wolf56,Constância Miguel3567,Dunger David B.13

Affiliation:

1. Department of Paediatrics, University of Cambridge, Cambridge, U.K.;

2. Department of Medicine, University of Cambridge, Cambridge, U.K.;

3. Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.;

4. Medical Research Council Epidemiology Unit, Addenbrooke's Hospital, Cambridge, U.K.;

5. Babraham Institute, Babraham, U.K.;

6. Centre for Trophoblast Research, University of Cambridge, Cambridge, U.K.;

7. Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, U.K.

Abstract

OBJECTIVE We have hypothesized that variation in imprinted growth-promoting fetal genes may affect maternal glucose concentrations in pregnancy. To test this hypothesis we evaluated the effects of fetal disruption of murine H19Δ13 on maternal glucose concentrations in pregnancy. RESEARCH DESIGN AND METHODS Experimental mice were pregnant females that had inherited the disrupted H19Δ13 from their fathers and were therefore phenotypically wild type due to imprinting; approximately half of their litters were null for H19Δ13 through maternal inheritance of the disrupted gene. In control mice approximately half the litter paternally inherited the disrupted H19Δ13, so the pups were either genetically wild type or phenotypically wild type due to imprinting. Blood glucose concentrations were assessed by intraperitoneal glucose tolerance tests on days 1, 16, and 18 of pregnancy. RESULTS There were no differences in the glucose concentrations of control and experimental pregnant mice at day 1. However, at day 16 mothers carrying H19Δ13-null pups had a significantly higher area under the glucose tolerance test curves than controls (1,845 ± 378 vs. 1,386 ± 107 mmol · min · l−1 [P = 0.01]) in association with increasing pregnancy-related insulin resistance. Although this difference lessened toward term, overall, mothers of maternally inherited H19Δ13 mutants had significantly higher glucose concentrations during the last trimester (1,602 ± 321 [n = 17] vs. 1,359 ± 147 [n = 18] mmol · min · l−1 [P = 0.009]). CONCLUSIONS This study provides evidence that maternal glucose concentrations in pregnant mice can be affected by targeted disruption of fetal H19Δ13. This implies that variable fetal IGF2 expression could affect risk for gestational diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3