Identification of Novel Disease-Relevant Genes and Pathways in the Pathogenesis of Type 1 Diabetes: A Potential Defect in Pancreatic Iron Homeostasis

Author:

Yip LindaORCID,Alkhataybeh Reem,Taylor Cariel,Fuhlbrigge Rebecca,Fathman C. Garrison

Abstract

Multiple pathways contribute to the pathophysiological development of type 1 diabetes (T1D); however, the exact mechanisms involved are unclear. We performed differential gene expression analysis in pancreatic islets of NOD mice versus age-matched congenic NOD.B10 controls to identify genes that may contribute to disease pathogenesis. Novel genes related to extracellular matrix development and glucagon and insulin signaling/secretion were changed in NOD mice during early inflammation. During “respective” insulitis, the expression of genes encoding multiple chemosensory olfactory receptors were upregulated, and during “destructive” insulitis, the expression of genes involved in antimicrobial defense and iron homeostasis were downregulated. Islet inflammation reduced the expression of Hamp that encodes hepcidin. Hepcidin is expressed in β-cells and serves as the key regulator of iron homeostasis. We showed that Hamp and hepcidin levels were lower, while iron levels were higher in the pancreas of 12-week-old NOD versus NOD.B10 mice, suggesting that a loss of iron homeostasis may occur in the islets during the onset of “destructive” insulitis. Interestingly, we showed that the severity of NOD disease correlates with dietary iron intake. NOD mice maintained on low-iron diets had a lower incidence of hyperglycemia, while those maintained on high-iron diets had an earlier onset and higher incidence of disease, suggesting that high iron exposure combined with a loss of pancreatic iron homeostasis may exacerbate NOD disease. This mechanism may explain the link seen between high iron exposure and the increased risk for T1D in humans.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3