Electrophysiological and Metabolic Characterization of Single β-Cells and Islets From Diabetic GK Rats

Author:

Hughes S J1,Faehling M2,Thorneley C W1,Proks P3,Ashcroft F M2,Smith P A2

Affiliation:

1. Department of Physiology, Division of Basic Medical Science, Imperial College School of Medicine at St. Mary's London

2. Department of Physiology, University of Oxford Oxford, England, U.K.

3. Institute of Molecular Physiology and Genetics Bratislava, Slovakia

Abstract

We have used the whole-cell recording technique to determine whether ATP-sensitive potassium (KATP) currents, voltage-dependent Ca2+ currents, and exocytosis are different in single β-cells from pancreatic islets of Goto-Kakizaki (GK) rats, a novel model of NIDDM, and normal rats. In addition, we have also measured the insulin secretory responses, ATP content, and the rate of glucose metabolism in intact islets. Although the glucose sensitivity of the KATP current was similar between GK rats and controls, in the absence of glucose, KATP current density was larger in GK rats, which resulted in a more hyperpolarized membrane potential. Whole-cell Ca2+ currents were similar. By monitoring the cell capacitance with a fixed intracellular solution, no difference was detected in the exocytotic responses of β-cells from normal and GK rats. In islets from GK rats, the rates of glucose utilization ([3H]H2O production from 5-[3H]glucose) and oxidation ([14C]CO2 production from U-[14C]glucose) were not significantly different from controls. Insulin secretion, however, was impaired (by 50%), and this was paralleled by a smaller increase in ATP content in response to stimulation by 10 mmol/1 glucose in islets from GK rats when compared with controls. Under conditions in which KATP channels were held open and the effects of glucose were independent of membrane potential, insulin release was still significantly lower in GK rat islets than in controls. These findings suggest that the impaired insulin secretion in islets from GK rats does not simply result from a failure to close KATP channels, nor does it result from an impairment in calcium secretion coupling.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3