Altered Expression Levels and Impaired Steps in the Pathway to Phosphatidylinositol 3-Kinase Activation via Insulin Receptor Substrates 1 and 2 in Zucker Fatty Rats

Author:

Anai Motonobu1,Funaki Makoto2,Ogihara Takehide2,Terasaki Jungo2,Inukai Kouichi1,Katagiri Hideki2,Fukushima Yasushi2,Yazaki Yoshio2,Kikuchi Masatoshi1,Oka Yoshitomo3,Asano Tomoichiro2

Affiliation:

1. Institute for Adult Diseases, Yamaguchi University School of Medicine, Asahi Life Foundation Tokyo

2. Department of Internal Medicine, Yamaguchi University School of Medicine, Faculty of Medicine, University of Tokyo Tokyo

3. Department of Internal Medicine , Yamaguchi University School of Medicine Yamaguchi, Japan

Abstract

To elucidate the mechanism of obesity-related insulin resistance, we investigated the impaired steps in the processes of phosphatidylinositol (PI) 3-kinase activation through binding with insulin receptor substrates 1and 2 (IRS-1 and IRS-2) in liver and muscle of Zucker fatty rats. The expressions of IRS-1 and IRS-2 were shown to be downregulated in both liver and muscle in fatty rats (hepatic IRS-1, 83%; hepatic IRS-2, 45%; muscle IRS-1, 60%; muscle IRS-2, 78%), resulting in decreased tyrosine phosphorylation in response to insulin stimulation. Despite the decrease in the tyrosine phosphorylation levels of hepatic IRS-1 and IRS-2 being mild to moderate, associated PI 3-kinase activities were dramatically decreased in fatty rats (IRS-1, 14%; IRS-2, 10%), which may suggest alteration in the sites of phosphorylated tyrosine residues of hepatic IRS-1 and IRS-2. In addition, we demonstrated that the expressions of p85α and p55α regulatory subunits of PI 3-kinase were reduced (p85α, 67%; p55α, 54%), and that the p50α regulatory subunit was markedly upregulated (176%) in the livers of fatty rats without apparent alterations in expressions of the catalytic subunits p110α and p110β. These alterations may reflect the obesity-related insulin resistance commonly observed in human NIDDM.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3