Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity

Author:

Rabbani Naila1,Godfrey Lisa1,Xue Mingzhan1,Shaheen Fozia1,Geoffrion Michèle2,Milne Ross2,Thornalley Paul J.1

Affiliation:

1. Warwick Medical School, Clinical Sciences Research Institute, University of Warwick, University Hospital, Coventry, U.K.

2. Diabetes and Atherosclerosis Laboratory, Ottawa Heart Institute Research Corporation, Ottawa, Ontario, Canada

Abstract

OBJECTIVE To study whether modification of LDL by methylglyoxal (MG), a potent arginine-directed glycating agent that is increased in diabetes, is associated with increased atherogenicity. RESEARCH DESIGN AND METHODS Human LDL was isolated and modified by MG in vitro to minimal extent (MGmin-LDL) as occurs in vivo. Atherogenic characteristics of MGmin-LDL were characterized: particle size, proteoglycan-binding, susceptibility to aggregation, LDL and non-LDL receptor–binding, and aortal deposition. The major site of modification of apolipoprotein B100 (apoB100) modification was investigated by mass spectrometric peptide mapping. RESULTS MGmin-LDL contained 1.6 molar equivalents of MG modification—mostly hydroimidazolone—as found in vivo. MGmin-LDL had decreased particle size, increased binding to proteoglycans, and increased aggregation in vitro. Cell culture studies showed that MGmin-LDL was bound by the LDL receptor but not by the scavenger receptor and had increased binding affinity for cell surface heparan sulfate–containing proteoglycan. Radiotracer studies in rats showed that MGmin-LDL had a similar fractional clearance rate in plasma to unmodified LDL but increased partitioning onto the aortal wall. Mass spectrometry peptide mapping identified arginine-18 as the hotspot site of apoB100 modification in MGmin-LDL. A computed structural model predicted that MG modification of apoB100 induces distortion, increasing exposure of the N-terminal proteoglycan–binding domain on the surface of LDL. This likely mediates particle remodeling and increases proteoglycan binding. CONCLUSIONS MG modification of LDL forms small, dense LDL with increased atherogenicity that provides a new route to atherogenic LDL and may explain the escalation of cardiovascular risk in diabetes and the cardioprotective effect of metformin.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3