Influence of Insulin in the Ventromedial Hypothalamus on Pancreatic Glucagon Secretion In Vivo

Author:

Paranjape Sachin A.1,Chan Owen1,Zhu Wanling1,Horblitt Adam M.1,McNay Ewan C.2,Cresswell James A.1,Bogan Jonathan S.1,McCrimmon Rory J.1,Sherwin Robert S.1

Affiliation:

1. Department of Internal Medicine, Division of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut; and

2. Department of Psychology and Center for Neuroscience Research, University at Albany, Albany, New York.

Abstract

OBJECTIVE Insulin released by the β-cell is thought to act locally to regulate glucagon secretion. The possibility that insulin might also act centrally to modulate islet glucagon secretion has received little attention. RESEARCH DESIGN AND METHODS Initially the counterregulatory response to identical hypoglycemia was compared during intravenous insulin and phloridzin infusion in awake chronically catheterized nondiabetic rats. To explore whether the disparate glucagon responses seen were in part due to changes in ventromedial hypothalamus (VMH) exposure to insulin, bilateral guide cannulas were inserted to the level of the VMH and 8 days later rats received a VMH microinjection of either 1) anti-insulin affibody, 2) control affibody, 3) artificial extracellular fluid, 4) insulin (50 μU), 5) insulin receptor antagonist (S961), or 6) anti-insulin affibody plus a γ-aminobutyric acid A (GABAA) receptor agonist muscimol, prior to a hypoglycemic clamp or under baseline conditions. RESULTS As expected, insulin-induced hypoglycemia produced a threefold increase in plasma glucagon. However, the glucagon response was fourfold to fivefold greater when circulating insulin did not increase, despite equivalent hypoglycemia and C-peptide suppression. In contrast, epinephrine responses were not altered. The phloridzin-hypoglycemia induced glucagon increase was attenuated (40%) by VMH insulin microinjection. Conversely, local VMH blockade of insulin amplified glucagon twofold to threefold during insulin-induced hypoglycemia. Furthermore, local blockade of basal insulin levels or insulin receptors within the VMH caused an immediate twofold increase in fasting glucagon levels that was prevented by coinjection to the VMH of a GABAA receptor agonist. CONCLUSIONS Together, these data suggest that insulin's inhibitory effect on α-cell glucagon release is in part mediated at the level of the VMH under both normoglycemic and hypoglycemic conditions.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3