Retinol-Binding Protein 4 Activates STRA6, Provoking Pancreatic β-Cell Dysfunction in Type 2 Diabetes

Author:

Huang Rong1,Bai Xinxiu1,Li Xueyan1,Wang Xiaohui1,Zhao Lina1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People’s Republic of China

Abstract

Pancreatic β-cell dysfunction plays a decisive role in the progression of type 2 diabetes. Retinol-binding protein 4 (RBP4) is a prominent adipokine in type 2 diabetes, although its effect on β-cell function remains elusive, and the underlying mechanisms are unknown. Here, we found that elevated circulating RBP4 levels were inversely correlated with pancreatic β-cell function in db/db mice across different glycemic stages. RBP4 directly suppressed glucose-stimulated insulin secretion (GSIS) in primary isolated islets and INS-1E cells in a dose- and time-dependent manner. RBP4 transgenic (RBP4-Tg) overexpressing mice showed a dynamic decrease of GSIS, which appeared as early as 8 weeks old, preceding the impairment of insulin sensitivity and glucose tolerance. Islets isolated from RBP4-Tg mice showed a significant decrease of GSIS. Mechanistically, we demonstrated that the stimulated by retinoic acid 6 (STRA6), RBP4’s only known specific membrane receptor, is expressed in β-cells and mediates the inhibitory effect of RBP4 on insulin synthesis through the Janus kinase 2/STAT1/ISL-1 pathway. Moreover, decreasing circulating RBP4 level could effectively restore β-cell dysfunction and ameliorate hyperglycemia in db/db mice. These observations revealed a role of RBP4 in pancreatic β-cell dysfunction, which provides new insight into the diabetogenic effect of RBP4.

Funder

the “one Hundred talent” project of Sun Yet-Sen University

Science and Technology Program of Guangzhou

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3