Empagliflozin Improves Insulin Sensitivity of the Hypothalamus in Humans With Prediabetes: A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial

Author:

Kullmann Stephanie12ORCID,Hummel Julia12,Wagner Robert123,Dannecker Corinna12,Vosseler Andreas123,Fritsche Louise12ORCID,Veit Ralf12,Kantartzis Konstantinos12,Machann Jürgen124,Birkenfeld Andreas L.123,Stefan Norbert123ORCID,Häring Hans-Ulrich123ORCID,Peter Andreas125,Preissl Hubert12367,Fritsche Andreas123ORCID,Heni Martin1235ORCID

Affiliation:

1. Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany

2. German Center for Diabetes Research, Neuherberg, Germany

3. Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany

4. Department of Diagnostic and Interventional Radiology, Section of Experimental Radiology, Eberhard Karls University Tübingen, Tübingen, Germany

5. Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Eberhard Karls University Tübingen, Tübingen, Germany

6. Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Interfaculty Center for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany

7. Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany

Abstract

OBJECTIVE Insulin action in the human brain reduces food intake, improves whole-body insulin sensitivity, and modulates body fat mass and its distribution. Obesity and type 2 diabetes are often associated with brain insulin resistance, resulting in impaired brain-derived modulation of peripheral metabolism. So far, no pharmacological treatment for brain insulin resistance has been established. Since sodium–glucose cotransporter 2 (SGLT2) inhibitors lower glucose levels and modulate energy metabolism, we hypothesized that SGLT2 inhibition may be a pharmacological approach to reverse brain insulin resistance. RESEARCH DESIGN AND METHODS In this randomized, double-blind, placebo-controlled clinical trial, 40 patients (mean ± SD; age 60 ± 9 years; BMI 31.5 ± 3.8 kg/m2) with prediabetes were randomized to receive 25 mg empagliflozin every day or placebo. Before and after 8 weeks of treatment, brain insulin sensitivity was assessed by functional MRI combined with intranasal administration of insulin to the brain. RESULTS We identified a significant interaction between time and treatment in the hypothalamic response to insulin. Post hoc analyses revealed that only empagliflozin-treated patients experienced increased hypothalamic insulin responsiveness. Hypothalamic insulin action significantly mediated the empagliflozin-induced decrease in fasting glucose and liver fat. CONCLUSIONS Our results corroborate insulin resistance of the hypothalamus in humans with prediabetes. Treatment with empagliflozin for 8 weeks was able to restore hypothalamic insulin sensitivity, a favorable response that could contribute to the beneficial effects of SGLT2 inhibitors. Our findings position SGLT2 inhibition as the first pharmacological approach to reverse brain insulin resistance, with potential benefits for adiposity and whole-body metabolism.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3