Reduced Expression of Nuclear-Encoded Genes Involved in Mitochondrial Oxidative Metabolism in Skeletal Muscle of Insulin-Resistant Women With Polycystic Ovary Syndrome

Author:

Skov Vibe1,Glintborg Dorte2,Knudsen Steen3,Jensen Thomas3,Kruse Torben A.1,Tan Qihua14,Brusgaard Klaus1,Beck-Nielsen Henning2,Højlund Kurt2

Affiliation:

1. Department of Biochemistry, Genetics, and Pharmacology, Odense University Hospital and Human Microarray Centre, University of Southern Denmark, Odense, Denmark

2. Department of Endocrinology, Odense University Hospital, Odense, Denmark

3. Medical Prognosis Institute Aps, Hørsholm, Denmark

4. Institute of Public Health, University of Southern Denmark, Odense, Denmark

Abstract

Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). In patients with type 2 diabetes, insulin resistance in skeletal muscle is associated with abnormalities in insulin signaling, fatty acid metabolism, and mitochondrial oxidative phosphorylation (OXPHOS). In PCOS patients, the molecular mechanisms of insulin resistance are, however, less well characterized. To identify biological pathways of importance for the pathogenesis of insulin resistance in PCOS, we compared gene expression in skeletal muscle of metabolically characterized PCOS patients (n = 16) and healthy control subjects (n = 13) using two different approaches for global pathway analysis: gene set enrichment analysis (GSEA 1.0) and gene map annotator and pathway profiler (GenMAPP 2.0). We demonstrate that impaired insulin-stimulated total, oxidative and nonoxidative glucose disposal in PCOS patients are associated with a consistent downregulation of OXPHOS gene expression using GSEA and GenMAPP analysis. Quantitative real-time PCR analysis validated these findings and showed that reduced levels of peroxisome proliferator–activated receptor γ coactivator α (PGC-1α) could play a role in the downregulation of OXPHOS genes in PCOS. In these women with PCOS, the decrease in OXPHOS gene expression in skeletal muscle cannot be ascribed to obesity and diabetes. This supports the hypothesis of an early association between insulin resistance and impaired mitochondrial oxidative metabolism, which is, in part, mediated by reduced PGC-1α levels. These abnormalities may contribute to the increased risk of type 2 diabetes observed in women with PCOS.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3