SFCN-OPI: Detection and Fine-Grained Classification of Nuclei Using Sibling FCN With Objectness Prior Interaction

Author:

Zhou Yanning,Dou Qi,Chen Hao,Qin Jing,Heng Pheng-Ann

Abstract

Cell nuclei detection and fine-grained classification have been fundamental yet challenging problems in histopathology image analysis. Due to the nuclei tiny size, significant inter-/intra-class variances, as well as the inferior image quality, previous automated methods would easily suffer from limited accuracy and robustness. In the meanwhile, existing approaches usually deal with these two tasks independently, which would neglect the close relatedness of them. In this paper, we present a novel method of sibling fully convolutional network with prior objectness interaction (called SFCN-OPI) to tackle the two tasks simultaneously and interactively using a unified end-to-end framework. Specifically, the sibling FCN branches share features in earlier layers while holding respective higher layers for specific tasks. More importantly, the detection branch outputs the objectness prior which dynamically interacts with the fine-grained classification sibling branch during the training and testing processes. With this mechanism, the fine-grained classification successfully focuses on regions with high confidence of nuclei existence and outputs the conditional probability, which in turn benefits the detection through back propagation. Extensive experiments on colon cancer histology images have validated the effectiveness of our proposed SFCN-OPI and our method has outperformed the state-of-the-art methods by a large margin.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DAT-Net: Deep Aggregation Transformer Network for automatic nuclear segmentation;Biomedical Signal Processing and Control;2024-12

2. Cross-Domain Nuclei Detection in Histopathology Images Using Graph-Based Nuclei Feature Alignment;IEEE Journal of Biomedical and Health Informatics;2024-01

3. Addressing Sparse Annotation: a Novel Semantic Energy Loss for Tumor Cell Detection from Histopathologic Images;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

4. Deep Learning-based Algorithms for Nucleus Segmentation: An Overview;2023 International Conference on Artificial Intelligence and Automation Control (AIAC);2023-11-17

5. Adaptive Focal Inverse Distance Transform Maps for Cell Recognition;Neural Information Processing;2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3