Author:
Vien Ngo Anh,Zimmermann Heiko,Toussaint Marc
Abstract
Bayesian optimization (BayesOpt) is a derivative-free approach for sequentially optimizing stochastic black-box functions. Standard BayesOpt, which has shown many successes in machine learning applications, assumes a finite dimensional domain which often is a parametric space. The parameter space is defined by the features used in the function approximations which are often selected manually. Therefore, the performance of BayesOpt inevitably depends on the quality of chosen features. This paper proposes a new Bayesian optimization framework that is able to optimize directly on the domain of function spaces. The resulting framework, Bayesian Functional Optimization (BFO), not only extends the application domains of BayesOpt to functional optimization problems but also relaxes the performance dependency on the chosen parameter space. We model the domain of functions as a reproducing kernel Hilbert space (RKHS), and use the notion of Gaussian processes on a real separable Hilbert space. As a result, we are able to define traditional improvement-based (PI and EI) and optimistic acquisition functions (UCB) as functionals. We propose to optimize the acquisition functionals using analytic functional gradients that are also proved to be functions in a RKHS. We evaluate BFO in three typical functional optimization tasks: i) a synthetic functional optimization problem, ii) optimizing activation functions for a multi-layer perceptron neural network, and iii) a reinforcement learning task whose policies are modeled in RKHS.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Practical First-Order Bayesian Optimization Algorithms;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04
2. FedCor: Correlation-Based Active Client Selection Strategy for Heterogeneous Federated Learning;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06