Author:
Liang Wei,Zhu Yixin,Zhu Song-Chun
Abstract
This paper studies a challenging problem of tracking severely occluded objects in long video sequences. The proposed method reasons about the containment relations and human actions, thus infers and recovers occluded objects identities while contained or blocked by others. There are two conditions that lead to incomplete trajectories: i) Contained. The occlusion is caused by a containment relation formed between two objects, e.g., an unobserved laptop inside a backpack forms containment relation between the laptop and the backpack. ii) Blocked. The occlusion is caused by other objects blocking the view from certain locations, during which the containment relation does not change. By explicitly distinguishing these two causes of occlusions, the proposed algorithm formulates tracking problem as a network flow representation encoding containment relations and their changes. By assuming all the occlusions are not spontaneously happened but only triggered by human actions, an MAP inference is applied to jointly interpret the trajectory of an object by detection in space and human actions in time. To quantitatively evaluate our algorithm, we collect a new occluded object dataset captured by Kinect sensor, including a set of RGB-D videos and human skeletons with multiple actors, various objects, and different changes of containment relations. In the experiments, we show that the proposed method demonstrates better performance on tracking occluded objects compared with baseline methods.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep video representation learning: a survey;Multimedia Tools and Applications;2023-12-19
2. X-VoE: Measuring eXplanatory Violation of Expectation in Physical Events;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01
3. LayoutSLAM: Object Layout based Simultaneous Localization and Mapping for Reducing Object Map Distortion;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23