A Framework for Multistream Regression With Direct Density Ratio Estimation

Author:

Haque Ahsanul,Tao Hemeng,Chandra Swarup,Liu Jie,Khan Latifur

Abstract

Regression over a stream of data is challenging due to unbounded data size and non-stationary distribution over time. Typically, a traditional supervised regression model over a data stream is trained on data instances occurring within a short time period by assuming a stationary distribution. This model is later used to predict value of response-variable in future instances. Over time, the model may degrade in performance due to changes in data distribution among incoming data instances. Updating the model for change adaptation requires true value for every recent data instances, which is scarce in practice. To overcome this issue, recent studies have employed techniques that sample fewer instances to be used for model retraining. Yet, this may introduce sampling bias that adversely affects the model performance. In this paper, we study the regression problem over data streams in a novel setting. We consider two independent, yet related, non-stationary data streams, which are referred to as the source and the target stream. The target stream continuously generates data instances whose value of response variable is unknown. The source stream, however, continuously generates data instances along with corresponding value for the response-variable, and has a biased data distribution with respect to the target stream. We refer to the problem of using a model trained on the biased source stream to predict the response-variable’s value in data instances occurring on the target stream as Multistream Regression. In this paper, we describe a framework for multistream regression that simultaneously overcomes distribution bias and detects change in data distribution represented by the two streams over time using a Gaussian kernel model. We analyze the theoretical properties of the proposed approach and empirically evaluate it on both real-world and synthetic data sets. Importantly, our results indicate superior performance by the framework compared to other baseline regression methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Stream Concept Drift Self-Adaptation Using Graph Neural Network;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3