Author:
Ji Guoliang,Liu Kang,He Shizhu,Zhao Jun
Abstract
Distant supervision for relation extraction is an efficient method to scale relation extraction to very large corpora which contains thousands of relations. However, the existing approaches have flaws on selecting valid instances and lack of background knowledge about the entities. In this paper, we propose a sentence-level attention model to select the valid instances, which makes full use of the supervision information from knowledge bases. And we extract entity descriptions from Freebase and Wikipedia pages to supplement background knowledge for our task. The background knowledge not only provides more information for predicting relations, but also brings better entity representations for the attention module. We conduct three experiments on a widely used dataset and the experimental results show that our approach outperforms all the baseline systems significantly.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献