Entity Alignment between Knowledge Graphs Using Attribute Embeddings

Author:

Trisedya Bayu Distiawan,Qi Jianzhong,Zhang Rui

Abstract

The task of entity alignment between knowledge graphs aims to find entities in two knowledge graphs that represent the same real-world entity. Recently, embedding-based models are proposed for this task. Such models are built on top of a knowledge graph embedding model that learns entity embeddings to capture the semantic similarity between entities in the same knowledge graph. We propose to learn embeddings that can capture the similarity between entities in different knowledge graphs. Our proposed model helps align entities from different knowledge graphs, and hence enables the integration of multiple knowledge graphs. Our model exploits large numbers of attribute triples existing in the knowledge graphs and generates attribute character embeddings. The attribute character embedding shifts the entity embeddings from two knowledge graphs into the same space by computing the similarity between entities based on their attributes. We use a transitivity rule to further enrich the number of attributes of an entity to enhance the attribute character embedding. Experiments using real-world knowledge bases show that our proposed model achieves consistent improvements over the baseline models by over 50% in terms of hits@1 on the entity alignment task.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An unsupervised multi-view contrastive learning framework with attention-based reranking strategy for entity alignment;Neural Networks;2024-11

2. A self-supervised entity alignment framework via attribute correction;Journal of King Saud University - Computer and Information Sciences;2024-10

3. Type-Enhanced Ensemble Triple Representation via Triple-Aware Attention for Cross-Lingual Entity Alignment;IEICE Transactions on Information and Systems;2024-09-01

4. Temporal knowledge completion enhanced self-supervised entity alignment;Journal of Intelligent Information Systems;2024-08-13

5. SARA: Semantic-assisted Reinforced Active Learning for Entity Alignment;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3