SAM-Net: Integrating Event-Level and Chain-Level Attentions to Predict What Happens Next

Author:

Lv Shangwen,Qian Wanhui,Huang Longtao,Han Jizhong,Hu Songlin

Abstract

Scripts represent knowledge of event sequences that can help text understanding. Script event prediction requires to measure the relation between an existing chain and the subsequent event. The dominant approaches either focus on the effects of individual events, or the influence of the chain sequence. However, only considering individual events will lose much semantic relations within the event chain, and only considering the sequence of the chain will introduce much noise. With our observations, both the individual events and the event segments within the chain can facilitate the prediction of the subsequent event. This paper develops self attention mechanism to focus on diverse event segments within the chain and the event chain is represented as a set of event segments. We utilize the event-level attention to model the relations between subsequent events and individual events. Then, we propose the chain-level attention to model the relations between subsequent events and event segments within the chain. Finally, we integrate event-level and chain-level attentions to interact with the chain to predict what happens next. Comprehensive experiment results on the widely used New York Times corpus demonstrate that our model achieves better results than other state-of-the-art baselines by adopting the evaluation of Multi-Choice Narrative Cloze task.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved hierarchical neural network model with local and global feature matching for script event prediction;Expert Systems with Applications;2025-01

2. What Comes Next and Why? A Staged Encoder-Decoder Architecture for Script Event Prediction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. EntroMAGNN: An Entropy-Driven Metapath-Based Graph Neural Network for Maritime Emergency Event Prediction;Lecture Notes in Computer Science;2024

4. Script Event Prediction Based on Causal Generalization Learning;2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI);2023-11-06

5. Deep Learning-Based Event Prediction for Text Analysis;2023 14th International Conference on Information and Communication Technology Convergence (ICTC);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3