Congestion Graphs for Automated Time Predictions

Author:

Senderovich Arik,Beck J. Christopher,Gal Avigdor,Weidlich Matthias

Abstract

Time prediction is an essential component of decision making in various Artificial Intelligence application areas, including transportation systems, healthcare, and manufacturing. Predictions are required for efficient resource allocation and scheduling, optimized routing, and temporal action planning. In this work, we focus on time prediction in congested systems, where entities share scarce resources. To achieve accurate and explainable time prediction in this setting, features describing system congestion (e.g., workload and resource availability), must be considered. These features are typically gathered using process knowledge, (i.e., insights on the interplay of a system’s entities). Such knowledge is expensive to gather and may be completely unavailable. In order to automatically extract such features from data without prior process knowledge, we propose the model of congestion graphs, which are grounded in queueing theory. We show how congestion graphs are mined from raw event data using queueing theory based assumptions on the information contained in these logs. We evaluate our approach on two real-world datasets from healthcare systems where scarce resources prevail: an emergency department and an outpatient cancer clinic. Our experimental results show that using automatic generation of congestion features, we get an up to 23% improvement in terms of relative error in time prediction, compared to common baseline methods. We also detail how congestion graphs can be used to explain delays in the system.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated machine learning with interpretation: A systematic review of methodologies and applications in healthcare;Medicine Advances;2024-08-27

2. Privacy-Aware Analysis based on Data Series;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Discovering Object-Centric Process Simulation Models;2023 5th International Conference on Process Mining (ICPM);2023-10-23

4. AI-augmented Business Process Management Systems: A Research Manifesto;ACM Transactions on Management Information Systems;2023-01-31

5. Can I Trust My Simulation Model? Measuring the Quality of Business Process Simulation Models;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3