Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks

Author:

Crawford Eric,Pineau Joelle

Abstract

There are many reasons to expect an ability to reason in terms of objects to be a crucial skill for any generally intelligent agent. Indeed, recent machine learning literature is replete with examples of the benefits of object-like representations: generalization, transfer to new tasks, and interpretability, among others. However, in order to reason in terms of objects, agents need a way of discovering and detecting objects in the visual world - a task which we call unsupervised object detection. This task has received significantly less attention in the literature than its supervised counterpart, especially in the case of large images containing many objects. In the current work, we develop a neural network architecture that effectively addresses this large-image, many-object setting. In particular, we combine ideas from Attend, Infer, Repeat (AIR), which performs unsupervised object detection but does not scale well, with recent developments in supervised object detection. We replace AIR’s core recurrent network with a convolutional (and thus spatially invariant) network, and make use of an object-specification scheme that describes the location of objects with respect to local grid cells rather than the image as a whole. Through a series of experiments, we demonstrate a number of features of our architecture: that, unlike AIR, it is able to discover and detect objects in large, many-object scenes; that it has a significant ability to generalize to images that are larger and contain more objects than images encountered during training; and that it is able to discover and detect objects with enough accuracy to facilitate non-trivial downstream processing.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ASIMO: Agent-centric scene representation in multi-object manipulation;The International Journal of Robotics Research;2024-06-10

2. Unsupervised Object-Centric Learning From Multiple Unspecified Viewpoints;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-05

3. Advancing precision single-cell analysis of red blood cells through semi-supervised deep learning using database of patients with post-COVID-19 syndrome;Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XXII;2024-03-12

4. Benchmarking and Analysis of Unsupervised Object Segmentation from Real-World Single Images;International Journal of Computer Vision;2024-01-06

5. RobustCLEVR: A Benchmark and Framework for Evaluating Robustness in Object-centric Learning;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3