Author:
Garrett Caelan Reed,Lozano-Pérez Tomás,Kaelbling Leslie Pack
Abstract
Many planning applications involve complex relationships defined on high-dimensional, continuous variables. For example, robotic manipulation requires planning with kinematic, collision, visibility, and motion constraints involving robot configurations, object poses, and robot trajectories. These constraints typically require specialized procedures to sample satisfying values. We extend PDDL to support a generic, declarative specification for these procedures that treats their implementation as black boxes. We provide domain-independent algorithms that reduce PDDLStream problems to a sequence of finite PDDL problems. We also introduce an algorithm that dynamically balances exploring new candidate plans and exploiting existing ones. This enables the algorithm to greedily search the space of parameter bindings to more quickly solve tightly-constrained problems as well as locally optimize to produce low-cost solutions. We evaluate our algorithms on three simulated robotic planning domains as well as several real-world robotic tasks.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献