Privacy-CNH: A Framework to Detect Photo Privacy with Convolutional Neural Network using Hierarchical Features

Author:

Tran Lam,Kong Deguang,Jin Hongxia,Liu Ji

Abstract

Photo privacy is a very important problem in the digital age where photos are commonly shared on social networking sites and mobile devices. The main challenge in photo privacy detection is how to generate discriminant features to accurately detect privacy at risk photos. Existing photo privacy detection works, which rely on low-level vision features, are non-informative to the users regarding what privacy information is leaked from their photos. In this paper, we propose a new framework called Privacy-CNH that utilizes hierarchical features which include both object and convolutional features in a deep learning model to detect privacy at risk photos. The generation of object features enables our model to better inform the users about the reason why a photo has privacy risk. The combination of convolutional and object features provide a richer model to understand photo privacy from different aspects, thus improving photo privacy detection accuracy. Experimental results demonstrate that the proposed model outperforms the state-of-the-art work and the standard convolutional neural network (CNN) with low-level features on photo privacy detection tasks.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When graph convolution meets double attention: online privacy disclosure detection with multi-label text classification;Data Mining and Knowledge Discovery;2024-01-05

2. DIPA2;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

3. Graphic image classification method based on an attention mechanism and fusion of multilevel and multiscale deep features;Computer Communications;2023-09

4. Visual privacy behaviour recognition for social robots based on an improved generative adversarial network;IET Computer Vision;2023-08-04

5. Exploring Machine Learning Privacy/Utility Trade-Off from a Hyperparameters Lens;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3