Bi-directional Adapter for Multimodal Tracking

Author:

Cao Bing,Guo Junliang,Zhu Pengfei,Hu Qinghua

Abstract

Due to the rapid development of computer vision, single-modal (RGB) object tracking has made significant progress in recent years. Considering the limitation of single imaging sensor, multi-modal images (RGB, infrared, etc.) are introduced to compensate for this deficiency for all-weather object tracking in complex environments. However, as acquiring sufficient multi-modal tracking data is hard while the dominant modality changes with the open environment, most existing techniques fail to extract multi-modal complementary information dynamically, yielding unsatisfactory tracking performance. To handle this problem, we propose a novel multi-modal visual prompt tracking model based on a universal bi-directional adapter, cross-prompting multiple modalities mutually. Our model consists of a universal bi-directional adapter and multiple modality-specific transformer encoder branches with sharing parameters. The encoders extract features of each modality separately by using a frozen, pre-trained foundation model. We develop a simple but effective light feature adapter to transfer modality-specific information from one modality to another, performing visual feature prompt fusion in an adaptive manner. With adding fewer (0.32M) trainable parameters, our model achieves superior tracking performance in comparison with both the full fine-tuning methods and the prompt learning-based methods. Our code is available: https://github.com/SparkTempest/BAT.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RGBT tracking: A comprehensive review;Information Fusion;2024-10

2. Multi-Level Fusion for Robust RGBT Tracking via Enhanced Thermal Representation;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-15

3. STFE: A Comprehensive Video-Based Person Re-Identification Network Based on Spatio-Temporal Feature Enhancement;IEEE Transactions on Multimedia;2024

4. A Comprehensive Review of RGBT Tracking;IEEE Transactions on Instrumentation and Measurement;2024

5. Exploring Multi-Modal Spatial–Temporal Contexts for High-Performance RGB-T Tracking;IEEE Transactions on Image Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3