Machine Learning for Personalized Medicine: Predicting Primary Myocardial Infarction from Electronic Health Records

Author:

Weiss Jeremy C.,Natarajan Sriraam,Peissig Peggy L.,McCarty Catherine A.,Page David

Abstract

Electronic health records (EHRs) are an emerging relational domain with large potential to improve clinical outcomes. We apply two statistical relational learning (SRL) algorithms to the task of predicting primary myocardial infarction. We show that one SRL algorithm, relational functional gradient boosting, outperforms propositional learners particularly in the medically-relevant high recall region. We observe that both SRL algorithms predict outcomes better than their propositional analogs and suggest how our methods can augment current epidemiological practices.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

Artificial Intelligence

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Kidney Transplant Care through the Integration of Chatbot;Healthcare;2023-09-12

2. A Study on Prediction of Myocardial Infarction Using Computational Intelligence and Machine Learning Algorithms;2023 Second International Conference on Trends in Electrical, Electronics, and Computer Engineering (TEECCON);2023-08-23

3. DeeP4med: deep learning for P4 medicine to predict normal and cancer transcriptome in multiple human tissues;BMC Bioinformatics;2023-07-04

4. Train-Once-for-All Personalization;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

5. Predicting benzodiazepine prescriptions: A proof-of-concept machine learning approach;Frontiers in Psychiatry;2023-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3