Generative Semi-supervised Learning for Multivariate Time Series Imputation

Author:

Miao Xiaoye,Wu Yangyang,Wang Jun,Gao Yunjun,Mao Xudong,Yin Jianwei

Abstract

The missing values, widely existed in multivariate time series data, hinder the effective data analysis. Existing time series imputation methods do not make full use of the label information in real-life time series data. In this paper, we propose a novel semi-supervised generative adversarial network model, named SSGAN, for missing value imputation in multivariate time series data. It consists of three players, i.e., a generator, a discriminator, and a classifier. The classifier predicts labels of time series data, and thus it drives the generator to estimate the missing values (or components), conditioned on observed components and data labels at the same time. We introduce a temporal reminder matrix to help the discriminator better distinguish the observed components from the imputed ones. Moreover, we theoretically prove that, SSGAN using the temporal reminder matrix and the classifier does learn to estimate missing values converging to the true data distribution when the Nash equilibrium is achieved. Extensive experiments on three public real-world datasets demonstrate that, SSGAN yields a more than 15% gain in performance, compared with the state-of-the-art methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rethinking general time series analysis from a frequency domain perspective;Knowledge-Based Systems;2024-10

2. Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

3. Semi-Supervised Learning for Time Series Collected at a Low Sampling Rate;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. ReCTSi: Resource-efficient Correlated Time Series Imputation via Decoupled Pattern Learning and Completeness-aware Attentions;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. A multi-source heterogeneous medical data enhancement framework based on lakehouse;Health Information Science and Systems;2024-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3