Graph Neural Network to Dilute Outliers for Refactoring Monolith Application

Author:

Desai Utkarsh,Bandyopadhyay Sambaran,Tamilselvam Srikanth

Abstract

Microservices are becoming the defacto design choice for software architecture. It involves partitioning the software components into finer modules such that the development can happen independently. It also provides natural benefits when deployed on the cloud since resources can be allocated dynamically to necessary components based on demand. Therefore, enterprises as part of their journey to cloud, are increasingly looking to refactor their monolith application into one or more candidate microservices; wherein each service contains a group of software entities (e.g., classes) that are responsible for a common functionality. Graphs are a natural choice to represent a software system. Each software entity can be represented as nodes and its dependencies with other entities as links. Therefore, this problem of refactoring can be viewed as a graph based clustering task. In this work, we propose a novel method to adapt the recent advancements in graph neural networks in the context of code to better understand the software and apply them in the clustering task. In that process, we also identify the outliers in the graph which can be directly mapped to top refactor candidates in the software. Our solution is able to improve state-of-the-art performance compared to works from both software engineering and existing graph representation based techniques.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mono2MS: Deep Fusion of Multi-Source Features for Partitioning Monolith into Microservices;Proceedings of the 15th Asia-Pacific Symposium on Internetware;2024-07-24

2. Towards a security‐optimized approach for the microservice‐oriented decomposition;Journal of Software: Evolution and Process;2024-06-27

3. A Survey on Variational Autoencoders in Recommender Systems;ACM Computing Surveys;2024-06-24

4. Magnet: Method-Based Approach Using Graph Neural Network for Microservices Identification;2024 IEEE 21st International Conference on Software Architecture (ICSA);2024-06-04

5. Domain-Driven Design for Microservices: An Evidence-Based Investigation;IEEE Transactions on Software Engineering;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3