Author:
Chen Huimin,Lin Yankai,Qi Fanchao,Hu Jinyi,Li Peng,Zhou Jie,Sun Maosong
Abstract
Review generation, aiming to automatically generate review text according to the given information, is proposed to assist in the unappealing review writing. However, most of existing methods only consider the overall sentiments of reviews and cannot achieve aspect-level sentiment control. Even though some previous studies attempt to generate aspect-level sentiment-controllable reviews, they usually require large-scale human annotations which are unavailable in the real world. To address this issue, we propose a mutual learning framework to take advantage of unlabeled data to assist the aspect-level sentiment-controllable review generation. The framework consists of a generator and a classifier which utilize confidence mechanism and reconstruction reward to enhance each other. Experimental results show our model can achieve aspect-sentiment control accuracy up to 88% without losing generation quality.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献