Author:
Gan Leilei,Kuang Kun,Yang Yi,Wu Fei
Abstract
Legal Judgment Prediction (LJP) is a key problem in legal artificial intelligence, which is aimed to predict a law case's judgment based on a given text describing the facts of the law case. Most of the previous work treats LJP as a text classification task and generally adopts deep neural networks (DNNs) based methods to solve it.
However, existing DNNs based work is data-hungry and hard to explain which legal knowledge is based on to make such a prediction.
Thus, injecting legal knowledge into neural networks to interpret the model and improve performance remains a significant problem.
In this paper, we propose to represent declarative legal knowledge as a set of first-order logic rules and integrate these logic rules into a co-attention network-based model explicitly. The use of logic rules enhances neural networks with explicit logical reason capabilities and makes the model more interpretable. We take the civil loan scenario as a case study and demonstrate the effectiveness of the proposed method through comprehensive experiments and analysis conducted on the collected dataset.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献