Contribution-Aware Federated Learning for Smart Healthcare

Author:

Liu Zelei,Chen Yuanyuan,Zhao Yansong,Yu Han,Liu Yang,Bao Renyi,Jiang Jinpeng,Nie Zaiqing,Xu Qian,Yang Qiang

Abstract

Artificial intelligence (AI) is a promising technology to transform the healthcare industry. Due to the highly sensitive nature of patient data, federated learning (FL) is often leveraged to build models for smart healthcare applications. Existing deployed FL frameworks cannot address the key issues of varying data quality and heterogeneous data distributions across multiple institutions in this sector. In this paper, we report our experience developing and deploying the Contribution-Aware Federated Learning (CAFL) framework for smart healthcare. It provides an efficient and accurate approach to fairly evaluate FL participants' contribution to model performance without exposing their private data, and improves the FL model training protocol to allow the best performing intermediate models to be distributed to participants for FL training. Since its deployment in Yidu Cloud Technology Inc. in March 2021, CAFL has served 8 well-established medical institutions in China to build healthcare decision support models. It can perform contribution evaluations 2.84 times faster than the best existing approach, and has improved the average accuracy of the resulting models by 2.62% compared to the previous system (which is significant in industrial settings). To our knowledge, it is the first contribution-aware federated learning successfully deployed in the healthcare industry.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantifying Bytes: Understanding Practical Value of Data Assets in Federated Learning;Tsinghua Science and Technology;2025-02

2. Revolutionizing machine learning: Blockchain-based crowdsourcing for transparent and fair labeled datasets supply;Future Generation Computer Systems;2024-12

3. Efficient Large-Scale Personalizable Bidding for Multiagent Auction-Based Federated Learning;IEEE Internet of Things Journal;2024-08-01

4. Verifiable Federated Learning Based on Data Service Quality;2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS);2024-05-31

5. Clients Behavior Monitoring in Federated Learning via Eccentricity Analysis;2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3