Meta Faster R-CNN: Towards Accurate Few-Shot Object Detection with Attentive Feature Alignment

Author:

Han Guangxing,Huang Shiyuan,Ma Jiawei,He Yicheng,Chang Shih-Fu

Abstract

Few-shot object detection (FSOD) aims to detect objects using only a few examples. How to adapt state-of-the-art object detectors to the few-shot domain remains challenging. Object proposal is a key ingredient in modern object detectors. However, the quality of proposals generated for few-shot classes using existing methods is far worse than that of many-shot classes, e.g., missing boxes for few-shot classes due to misclassification or inaccurate spatial locations with respect to true objects. To address the noisy proposal problem, we propose a novel meta-learning based FSOD model by jointly optimizing the few-shot proposal generation and fine-grained few-shot proposal classification. To improve proposal generation for few-shot classes, we propose to learn a lightweight metric-learning based prototype matching network, instead of the conventional simple linear object/nonobject classifier, e.g., used in RPN. Our non-linear classifier with the feature fusion network could improve the discriminative prototype matching and the proposal recall for few-shot classes. To improve the fine-grained few-shot proposal classification, we propose a novel attentive feature alignment method to address the spatial misalignment between the noisy proposals and few-shot classes, thus improving the performance of few-shot object detection. Meanwhile we learn a separate Faster R-CNN detection head for many-shot base classes and show strong performance of maintaining base-classes knowledge. Our model achieves state-of-the-art performance on multiple FSOD benchmarks over most of the shots and metrics.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3