PYLON: A PyTorch Framework for Learning with Constraints

Author:

Ahmed Kareem,Li Tao,Ton Thy,Guo Quan,Chang Kai-Wei,Kordjamshidi Parisa,Srikumar Vivek,Van den Broeck Guy,Singh Sameer

Abstract

Deep learning excels at learning task information from large amounts of data, but struggles with learning from declarative high-level knowledge that can be more succinctly expressed directly. In this work, we introduce PYLON, a neuro-symbolic training framework that builds on PyTorch to augment procedurally trained models with declaratively specified knowledge. PYLON lets users programmatically specify constraints as Python functions and compiles them into a differentiable loss, thus training predictive models that fit the data whilst satisfying the specified constraints. PYLON includes both exact as well as approximate compilers to efficiently compute the loss, employing fuzzy logic, sampling methods, and circuits, ensuring scalability even to complex models and constraints. Crucially, a guiding principle in designing PYLON is the ease with which any existing deep learning codebase can be extended to learn from constraints in a few lines code: a function that expresses the constraint, and a single line to compile it into a loss. Our demo comprises of models in NLP, computer vision, logical games, and knowledge graphs that can be interactively trained using constraints as supervision.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Training neural networks with classification rules for incorporating domain knowledge;Knowledge-Based Systems;2024-06

2. ULLER: A Unified Language for Learning and Reasoning;Lecture Notes in Computer Science;2024

3. A Real-Time Mask Wearing Behavior Detection Model Based on Deep Learning;2023 5th International Symposium on Smart and Healthy Cities (ISHC);2023-12-16

4. Declarative Learning-Based Programming as an Interface to AI Systems;Frontiers in Artificial Intelligence;2022-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3