FFA-Net: Feature Fusion Attention Network for Single Image Dehazing

Author:

Qin Xu,Wang Zhilin,Bai Yuanchao,Xie Xiaodong,Jia Huizhu

Abstract

In this paper, we propose an end-to-end feature fusion at-tention network (FFA-Net) to directly restore the haze-free image. The FFA-Net architecture consists of three key components:1) A novel Feature Attention (FA) module combines Channel Attention with Pixel Attention mechanism, considering that different channel-wise features contain totally different weighted information and haze distribution is uneven on the different image pixels. FA treats different features and pixels unequally, which provides additional flexibility in dealing with different types of information, expanding the representational ability of CNNs. 2) A basic block structure consists of Local Residual Learning and Feature Attention, Local Residual Learning allowing the less important information such as thin haze region or low-frequency to be bypassed through multiple local residual connections, let main network architecture focus on more effective information. 3) An Attention-based different levels Feature Fusion (FFA) structure, the feature weights are adaptively learned from the Feature Attention (FA) module, giving more weight to important features. This structure can also retain the information of shallow layers and pass it into deep layers.The experimental results demonstrate that our proposed FFA-Net surpasses previous state-of-the-art single image dehazing methods by a very large margin both quantitatively and qualitatively, boosting the best published PSNR metric from 30.23 dB to 36.39 dB on the SOTS indoor test dataset. Code has been made available at GitHub.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 706 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3