AdaFilter: Adaptive Filter Fine-Tuning for Deep Transfer Learning

Author:

Guo Yunhui,Li Yandong,Wang Liqiang,Rosing Tajana

Abstract

There is an increasing number of pre-trained deep neural network models. However, it is still unclear how to effectively use these models for a new task. Transfer learning, which aims to transfer knowledge from source tasks to a target task, is an effective solution to this problem. Fine-tuning is a popular transfer learning technique for deep neural networks where a few rounds of training are applied to the parameters of a pre-trained model to adapt them to a new task. Despite its popularity, in this paper we show that fine-tuning suffers from several drawbacks. We propose an adaptive fine-tuning approach, called AdaFilter, which selects only a part of the convolutional filters in the pre-trained model to optimize on a per-example basis. We use a recurrent gated network to selectively fine-tune convolutional filters based on the activations of the previous layer. We experiment with 7 public image classification datasets and the results show that AdaFilter can reduce the average classification error of the standard fine-tuning by 2.54%.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Affine Collaborative Normalization: A shortcut for adaptation in medical image analysis;Pattern Recognition;2024-09

2. A Systematic Comparison of Task Adaptation Techniques for Digital Histopathology;Bioengineering;2023-12-24

3. A Comprehensive Study of Transfer Learning under Constraints;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

4. Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. Signal enhancement in wireless sensor networks based on adaptive filters;Journal of Measurements in Engineering;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3