Finding Minimum-Weight Link-Disjoint Paths with a Few Common Nodes

Author:

Tao Binglin,Xiao Mingyu,Zhao Jingyang

Abstract

Network survivability has drawn certain interest in network optimization. However, the demand for full protection of a network is usually too restrictive. To overcome the limitation of geographical environments and to save network resources, we turn to establish backup networks allowing a few common nodes. It comes out the problem of finding k link-disjoint paths between a given pair of source and sink in a network such that the number of common nodes shared by at least two paths is bounded by a constant and the total link weight of all paths is minimized under the above constraints. For the case k = 2, where we have only one backup path, several fast algorithms have been developed in the literature. For the case k > 2, little results are known. In this paper, we first establish the NP-hardness of the problem with general k. Motivated by the situation that each node in a network may have a capability of multicasting, we also study a restricted version with one more requirement that each node can be shared by at most two paths. For the restricted version, we build an ILP model and design a fast algorithm by using the techniques of augmenting paths and splitting nodes. Furthermore, experimental results on synthetic and real networks show that our algorithm is effective in practice.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimum-Weight Link-Disjoint Paths With a Bounded Number of Shared Nodes;IEEE Transactions on Network and Service Management;2023-09

2. Interference-free walks in time: temporally disjoint paths;Autonomous Agents and Multi-Agent Systems;2022-10-21

3. On Searching Multiple Disjoint Shortest Paths in Scale-Free Networks With Hyperbolic Geometry;IEEE Transactions on Network Science and Engineering;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3