Semi-Supervised Learning under Class Distribution Mismatch

Author:

Chen Yanbei,Zhu Xiatian,Li Wei,Gong Shaogang

Abstract

Semi-supervised learning (SSL) aims to avoid the need for collecting prohibitively expensive labelled training data. Whilst demonstrating impressive performance boost, existing SSL methods artificially assume that small labelled data and large unlabelled data are drawn from the same class distribution. In a more realistic scenario with class distribution mismatch between the two sets, they often suffer severe performance degradation due to error propagation introduced by irrelevant unlabelled samples. Our work addresses this under-studied and realistic SSL problem by a novel algorithm named Uncertainty-Aware Self-Distillation (UASD). Specifically, UASD produces soft targets that avoid catastrophic error propagation, and empower learning effectively from unconstrained unlabelled data with out-of-distribution (OOD) samples. This is based on joint Self-Distillation and OOD filtering in a unified formulation. Without bells and whistles, UASD significantly outperforms six state-of-the-art methods in more realistic SSL under class distribution mismatch on three popular image classification datasets: CIFAR10, CIFAR100, and TinyImageNet.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymmetric Beta Loss for Evidence-Based Safe Semi-Supervised Multi-Label Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Open-Domain Semi-Supervised Learning via Glocal Cluster Structure Exploitation;IEEE Transactions on Knowledge and Data Engineering;2024-08

3. Knowledge Distillation Meets Open-Set Semi-supervised Learning;International Journal of Computer Vision;2024-07-26

4. Exploration and Exploitation of Unlabeled Data for Open-Set Semi-supervised Learning;International Journal of Computer Vision;2024-07-08

5. Open-Set Semi-Supervised Learning by Distribution Alignment;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3