Author:
Ji Yuanfeng,Zhang Lu,Wu Jiaxiang,Wu Bingzhe,Li Lanqing,Huang Long-Kai,Xu Tingyang,Rong Yu,Ren Jie,Xue Ding,Lai Houtim,Liu Wei,Huang Junzhou,Zhou Shuigeng,Luo Ping,Zhao Peilin,Bian Yatao
Abstract
AI-aided drug discovery (AIDD) is gaining popularity due to its potential to make the search for new pharmaceuticals faster, less expensive, and more effective. Despite its extensive use in numerous fields (e.g., ADMET prediction, virtual screening), little research has been conducted on the out-of-distribution (OOD) learning problem with noise. We present DrugOOD, a systematic OOD dataset curator and benchmark for AIDD. Particularly, we focus on the drug-target binding affinity prediction problem, which involves both macromolecule (protein target) and small-molecule (drug compound). DrugOOD offers an automated dataset curator with user-friendly customization scripts, rich domain annotations aligned with biochemistry knowledge, realistic noise level annotations, and rigorous benchmarking of SOTA OOD algorithms, as opposed to only providing fixed datasets. Since the molecular data is often modeled as irregular graphs using graph neural network (GNN) backbones, DrugOOD also serves as a valuable testbed for graph OOD learning problems. Extensive empirical studies have revealed a significant performance gap between in-distribution and out-of-distribution experiments, emphasizing the need for the development of more effective schemes that permit OOD generalization under noise for AIDD.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献