Transformer-Based Value Function Decomposition for Cooperative Multi-Agent Reinforcement Learning in StarCraft

Author:

Khan Muhammad Junaid,Ahmed Syed Hammad,Sukthankar Gita

Abstract

The StarCraft II Multi-Agent Challenge (SMAC) was created to be a challenging benchmark problem for cooperative multi-agent reinforcement learning (MARL). SMAC focuses exclusively on the problem of StarCraft micromanagement and assumes that each unit is controlled individually by a learning agent that acts independently and only possesses local information; centralized training is assumed to occur with decentralized execution (CTDE). To perform well in SMAC, MARL algorithms must handle the dual problems of multi-agent credit assignment and joint action evaluation. This paper introduces a new architecture TransMix, a transformer-based joint action-value mixing network which we show to be efficient and scalable as compared to the other state-of-the-art cooperative MARL solutions. TransMix leverages the ability of transformers to learn a richer mixing function for combining the agents' individual value functions. It achieves comparable performance to previous work on easy SMAC scenarios and outperforms other techniques on hard scenarios, as well as scenarios that are corrupted with Gaussian noise to simulate fog of war.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SGCD: Subgroup Contribution Decomposition for Multi-Agent Reinforcement Learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Adaptive Privacy Budget Allocation in Federated Learning: A Multi-Agent Reinforcement Learning Approach;ICC 2024 - IEEE International Conference on Communications;2024-06-09

3. Transformer in reinforcement learning for decision-making: a survey;Frontiers of Information Technology & Electronic Engineering;2024-06

4. Learning cooperative strategies in StarCraft through role-based monotonic value function factorization;Electronic Research Archive;2024

5. Communicative and Cooperative Learning for Multi-agent Indoor Navigation;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3